
Claude Bernard
Washington University

St. Louis
(MILC & Fermilab Lattice/MILC Collaborations)

Status and Prospects for some 
MILC and Fermilab/MILC Projects 

New Horizons for Lattice Computations with Chiral Fermions
Brookhaven, May 14-16, 2012



Heavy-light Decay Constants
✦ Fermilab heavy quarks with MILC 2+1 Asqtad 

staggered light quarks
• “Old data” project

• 0.15 fm ≤  a ≤ 0.09 fm
• 4 sources per configuration 
• renormalization mostly non-perturbative; 1-loop 

perturbation theory for remainder
• to appear in PRD shortly

• “New data” project:  similar to above, but:
• 0.15 fm ≤  a ≤ 0.045 fm
• 2 to 5 times more configurations/ensemble
• in progress

✦ For D system, ongoing HISQ project with MILC 
2+1+1 HISQ quarks:  more later.
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Asqtad Ensembles

3

“old data” 
heavy-light 
decay const. 
analysis

not in central 
value but in 
error analysis



D system

✦ fD as function of light 
valence mass mq (= 
light sea mass ml).

✦ fDs as function of 
light sea mass ml.

• valence mass 
held fixed ≈ ms.

✦ a≅0.15 fm points 
not included in fit.

• note qualitatively 
different behavior
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B system

✦ fB as function of light 
valence mass mq (= 
light sea mass ml).

✦ fBs as function of 
light sea mass ml.

• valence mass 
held fixed ≈ ms.

✦ a≅0.15 fm points 
not included in fit.

• qual. different 
behavior + large 
stat. errors
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fDs = 260.1± 10.8 MeV

fD+ = 218.9± 11.3 MeV

fDs/fD+ = 1.188± 0.025

fBs = 242.0± 9.5 MeV

fB+ = 196.9± 8.9 MeV

fBs/fB+ = 1.229± 0.026

Fermilab/MILC Results

• errors include statistics and systematic errors
• discretization errors for heavy & light quarks automatically included 

with statistics errors by our Bayesian procedure
• have added on other systematics in quadrature
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Heavy-light Decay Constants
✦ Fermilab heavy quarks with MILC 2+1 asqtad 

staggered light quarks
• “Old data” project

• 0.15 fm ≤  a ≤ 0.09 fm
• 4 sources per configuration 
• renormalization mostly non-perturbative; 1-loop perturbation 

theory for remainder
• to appear in PRD shortly

• “New data” project:  similar to above, but:
• 0.15 fm ≤  a ≤ 0.045 fm
• 2 to 5 times more configurations/ensemble
• in progress

✦ For D system, ongoing HISQ project with MILC 
2+1+1 HISQ quarks:  more later.
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Asqtad Ensembles

9

“new data” 
heavy-light 
decay const. 
analysis

• 0.06 fm and 0.045 
ensembles added.

• runs lengthened by 
factor of ~2 to ~5.



“New Data” fD

• statistical errors 
reduced as 
expected.

• correlator fits 
still need work; 
chiral fits are in 
progress.

• trend:                
fD and fDs ↓       
as a ↓ 
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Outlook: Fermilab/MILC
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% Errors

Quantity

fDs

fD

fDs /fD

fBs

fB

fBs/fB

“Old data”
arXiv:1112.3051

“New data” 
(in progress)

4.2 2.2

5.2 2.8

2.1 1.1

3.9 2.6

4.5 2.8

2.1 1.2



B Mixing

⌇
⌇
⌇
⌇

W± W∓

t, c, u

t, c, u

B0
q B

0
q B0

q B
0
q

Operators 
are

O1 = (b̄αγµLq
α) (b̄βγµLq

β)

O2 = (b̄αLqα) (b̄βLqβ)

O3 = (b̄αLqβ) (b̄βLqα)

O4 = (b̄αLqα) (b̄βRqβ)

O5 = (b̄αLqβ) (b̄βRqα)

SM

BSM

Heff =
5∑

i=1

CiOi

Oi

Common parametrization

〈B̄0
q |Oi(µ)|B0

q 〉 ∝ f2
Bq

Bi(µ)
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B Mixing
✦ Fermilab heavy quarks with MILC 2+1 asqtad 

staggered light quarks
• “Old data” project

• 0.12 fm ≤  a ≤ 0.09 fm
• focus on SM operators, and in particular on 01, which gives

• construct operators from Fermilab quark + naive quark 
(made from staggered).

– drop NLO “wrong spin” terms [⇒systematic error estimate].

• 1-loop perturbation theory for mixing.
• to be posted in next month or so.

• “New data” project:  similar to above, but:
• 0.15 fm ≤  a ≤ 0.045 fm.
• complete set of SM and BSM operators.
• all wrong spin terms included correctly in ChPT.
• in progress. 13

ξ = fBs

√
B̂Bs/fBd

√
B̂Bd
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ξ = fBs

√
B̂Bs/fBd

√
B̂Bd

R.T. Evans, 
E. Gámiz
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Asqtad Ensembles

14

“old data” B-
mixing 
analysis



“Wrong spin” Issue

✦ Four quark operators as in [HPQCD, PRD 80 (’09)014503].
• local products of bilinears of heavy quark fields           and naive 

quarks           (made from staggered):

✦ Desired spin-taste of staggered quarks not constructed by 
separately summing each bilinear over hypercube               
⇒ contributions from unwanted spin-tastes.

• vanish in continuum limit by taste conservation.

• but will appear in staggered ChPT at some order.

• we had an argument (in a collaboration note) that chiral logs from 
wrong-spin taste first appear at NNLO. [Was used in HPQCD paper.]

• in writing up our B mixing computation, found flaw in previous 
argument:  such terms appear at NLO and need to be included.
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Q̄(x)ΓΨ(x) Q̄(x)Γ′Ψ(x)

Q̄(x)
Ψ(x)



“Wrong-spin” and Chiral/Continuum Errors

✦ Effects of wrong spin ops have now been calculated to 1-
loop in staggered ChPT [CB].
• don’t have all needed matrix elements in old-data calc, but can 

estimate effect by sample new-data calc.

• wrong-spin contrib < stat + other chiral/continuum errors, but 
effect on slope seems significant  ⇒ tends to increase ξ . 16
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Final “Old-Data” Results
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Final “Old-Data” Results
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Result:    ξ = 1.268(63)   (nearly final)



B Mixing
✦ Fermilab heavy quarks with MILC 2+1 asqtad 

staggered light quarks
• “Old data” project

• 0.12 fm ≤  a ≤ 0.09 fm
• focus on SM operators, and in particular on 01, which gives

• construct operators from Fermilab quark + naive quark 
(made from staggered).

– drop NLO “wrong spin” terms [⇒systematic error estimate].

• 1-loop perturbation theory for mixing.
• to be posted in next month or so.

• “New data” project:  similar to above, but:
• 0.15 fm ≤  a ≤ 0.045 fm.
• complete set of SM and BSM operators.
• all wrong spin terms included correctly in ChPT.
• in progress. 18
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Asqtad Ensembles
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Asqtad Ensembles

19

“new-data” 
B-mixing: 
plan

completed

subset of 
operators 
done



Matrix element of O2 
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✦ Some other expected errors:
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• limit to precision.

• may be able to reduce 
a bit (to ~6%?)  with 
finer spacings.



MILC HISQ 2+1+1 Ensembles
✦ Asqtad ensembles are complete; though there is 

more physics still to extract.

✦ For higher precision, have moved to HISQ [Follana et 
al. [HPQCD], PRD 75 (2007) 054502].
• Reduced O(αS a2) and O(αS2 a2) errors with respect to 

Asqtad.

• (amc)4 errors reduced ⇒ treat charm with same 

relativistic action as light quarks.

• Ensembles include charm sea quarks
• (although error of quenching charm is probably 

negligible in most cases, it doesn’t cost much to 
include it in sea.)

22
[A. Bazavov, D. Toussaint]



HISQ Ensembles
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HISQ Ensembles
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310245179144

• recall that coupling of 
these sea pions to 
valence pions is NLO 
in ChPT.

[MeV]



mRMS
π

HISQ Ensembles

23

310245179144

• recall that coupling of 
these sea pions to 
valence pions is NLO 
in ChPT.

⇒  suppressed by

[MeV]

(mRMS
π )2

16π2f2
π



Light decay constants w/ 2+1+1 HISQ

✦ In Asqtad case, needed ensembles with ms lighter 
than physical to control SU(3) chiral extrapolation.

✦ In HISQ case, such ensembles have not been 
available (but are coming on line now...), so SU(3) fits 
have not yet been very successful.

✦ “Heavy kaon” SU(2) chiral perturbation theory [à la 
RBC/UKQCD and PACS-CS], has been recently 
worked out for staggered case [CB, Du, and 
Lightman], but not yet tried.

✦ So focus for now on physical-mass HISQ ensembles, 
where ChPT not needed.

24
[M. Lightman]
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a=0.088 fm, Near Physical Sea Quark Masses

HISQ fπ , fK

✦ On each ensemble: 
• for valence masses  mx, my    ms, meson mass squared   (mxy)2  

is very linear in mx + my.

• decay const fxy appears linear for mx + my     0.5 ms, but there 
is separate dependence on mx and my for heavier masses.
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HISQ fπ , fK
✦ Suggests following interpolating forms:

✦ On each ensemble, do linear interpolations of this form 
between (mx, my) = (ml, ml) and its nearest neighbor, and 
between (mx, my) = (ml, ms) and its nearest neighbors. 

✦ Require that (fxx/mxx)2  = (fπ/mπ)2, solve for mx to determine 
physical light mass mlphys

• (Checked that quadratic interpolation with 3 points makes little 
difference)

✦ Require that (mxy/mxx)2  = (mK/mπ)2, solve for my to determine 
physical strange mass msphys

• (Checked that interpolating 2(mxy)2-(mxx)2  to find msphys with makes little 
difference) 26

(amxy)2 = A1 + B1(amx + amy)

afxy =
{

A2 + B2(amx + amy), for mx ∼ ml and my ∼ ml

A3 + B3amx + C3amy, for mx ∼ ml and my ∼ ms



HISQ fπ , fK
✦ Then linearly interpolate f and f to physical masses.

• for the moment focus on fK/fπ ; compute it for each ensemble.

• then fit it as function of a2.

• two finest points in linear fit:  (fK/fπ)continuum = 1.1925(32)
• all 3 points in linear fit:   (fK/fπ)continuum = 1.1892(20)
• parabola through all 3 points:   (fK/fπ)continuum = 1.1962(56) 27
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HISQ fπ , fK: systematic errors
✦ Half the largest difference between continuum extraps to 

estimate that error.
✦ Finite volume effects from ensembles with  L=24, 32, and 

40 with a=0.12 fm and ml = 0.1 ms.

• “NNLO ChPT” means using Colangelo, Dürr, Haefeli, NPB 721 
(‘05) 136] to terms of                             . 28
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HISQ fπ , fK: preliminary result

✦ Find:   fK/fπ = 1.1925(32)stat(36)continuum(32)finite volume

✦ Effect still to investigate:  tuning error in sea quark 
masses.

✦ More study of interpolating fits also needed.
• A systematic way will be to use the SU(2) staggered ChPT; will 

also allow us to get information out of the  ensembles with u,d 
mass heavier than physical, and find LECs.

• Some ensembles with ms lighter than physical have recently 
been completed; SU(3) fits should now also be possible.

29



D decay constants w/ 2+1+1 HISQ

✦ advantage of HISQ: discretization errors sufficiently 
reduced (both a2 and (ma)4 ) that charm may be treated 
with same action as light quarks.
• avoid renormalization errors and many tuning issues.

• shares to some degree the small statistical errors of staggered 
light pseudoscalars.

30
[D. Toussaint, J. Kim]
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HISQ Ensembles
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HISQ Ensembles

31
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project
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fD , fDs procedure

✦ On each ensemble:

•                                         ,  and then                                        
(cubic  interpolation through 3 light valence masses)

•                                                                                                          
(linear interpolation/extrapolation through 2 strange valence 
masses)

•                                                                                                        
(linear interpolation/extrapolation through 2 charm valence 
masses) 

•                 ,                   at proper adjusted masses                         
(linear interpolation in light, strange and charm masses)                                                                                               

32

2M2
K −Mπ → amphys

s

MDs → amphys
c

(Mπ/fπ)2 → amphys
u,d → a

f → fD f → fDs



HISQ fD , fDs
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HISQ fD , fDs
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HISQ fD , fDs

33

quadratic continuum 
extrapolation and 
sea-mass chiral 
interpolation(!)

finite volume effects:
smaller volume
larger volume

(primarily from fπ 
scale setting)



Finite size effects

34

• Not much evidence for 
finite size effects.

• Here, results are in 
lattice units. 

• Finite-volume effects 
can enter if scale is 
set in finite-volume-
dependent way, e.g. 
fπ.



HISQ fD , fDs

✦ Very preliminary results:

• ??? are systematic errors, including:
• continuum extrapolation/chiral interpolation

– staggered ChPT has been worked out [CB and J. Komijani] and 
may help to control continuum extrapolation.

• finite volume.
• isospin:  easy to determine valence isospin breaking,                 

e.g.,          vs. generic       .

• EM effects: from Gläßle and Bali, arXiv:1111.3958 and Davies, 
et al., PRD  82  (2010) 114504, expect < 0.5%

– ultimately plan to check with our EM code....

35

fD+ fD

fD = 211.6± 2.4± ??? MeV
fDs = 245.2± 0.8± ??? MeV



Outlook: Fermilab/MILC
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% Errors
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3.9 2.6 ~1.5?

4.5 2.8 ~2.0?

2.1 1.2 ~0.8?



HISQ 
valence 
& sea
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HISQ 
valence 
& sea

Outlook: Fermilab/MILC
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(valence & 
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Comment

✦ Best direction for us for B physics not obvious.  
• Use Fermilab or Oktay-Kronfeld (improved Fermilab) b 

quarks?  

• Push/extrapolate HISQ up to the b [HPQCD]?

• Leverage HISQ data for D (or heavier D) by using Fermilab 
quarks for B/D ratios?

• In any case, will eventually need non-perturbative or 2-loop 
matching for many quantities to match other systematic 
improvements.
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K→π semileptonic decay 

✦ Focus at q2=0, where we can use the method 
HPQCD proposed for semileptonic D decay:
• Full matrix element of vector current Vμ is hard because 

conserved current is complicated and local current needs 
renormalization.

• Instead use ∂μ Vμ = (mb - ma) S
• S is local, and product  (mb-ma)S  not renormalized.

• This is sufficient for f+(q2=0) = f0(q2=0).

✦ Two-part program:
•  HISQ valence on 2+1 Asqtad ensembles (close to 

completion).

•  HISQ valence on 2+1+1 HISQ ensembles (early stage).
• ultimately to include D → K, and q2 ≠ 0
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K→π project       
(HISQ on Asqtad)



K→π ;  HISQ on Asqtad

• Strange HISQ valence mass tuned to its physical value [from 
Davies, et al, PRD 81 (2010) 034506, using the “ηs”].

• Light HISQ valence mass tuned to Asqtad sea by: 

• So as close to “unitary” as possible for ml in this mixed-action 
theory.

• Mixed-action SChPT at 1-loop has been calculated [E. Gámiz and 
CB], but still needs checking.
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K→π ;  HISQ on Asqtad
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Preliminary

Sample Chiral Fit

• Statistical errors:         
~0.2% -- 0.3%

• Different chiral fits tried so 
far agree within 1 stat. σ. 
E.g.: 

• 1-loop SChPT + 2-
loop continuum ChPT.

• 1-loop SChPT + higher 
order analytic. 

• Need to understand the size of a2 effects better; check SChPT.



K→π ;  HISQ on Asqtad

✦ Expected error budget:
• Statistical: 0.2--0.3%

• Chiral extrapolation, fitting function: 0.1%

• Discretization: 0.15%

• Mistuning of ms in the sea: 0.2%

✦ Total:  0.35%--0.5%, should be competitive with state 
of the art:  RBC/UKQCD.
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K→ π semileptonic decay 

✦ Focus at q2=0, where we can use the method 
HPQCD proposed for semileptonic D decay:
• Full matrix element of vector current Vμ is hard because 

conserved current is complicated and local current needs 
renormalization.

• Instead use ∂μ Vμ = (mb - ma) S
• S is local, and product  (mb-ma)S  not renormalized.

• This is sufficient for f+(q2=0) = f0(q2=0).

✦ Two-part program:
•  HISQ valence on 2+1 Asqtad ensembles (close to 

completion).

•  HISQ valence on 2+1+1 HISQ ensembles (early stage).
• ultimately to include D → K, and q2 ≠ 0
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K→π :  including HISQ on HISQ
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Sample Chiral Fit
• Consistency with 

extrapolated HISQ on 
Asqtad results. 

• Stat. errors larger on 
physical mass 
ensemble;  momentum 
needed for q=0 is 
larger. 

• Ensembles with 
heavier-than-physical 
u,d mass important for 
reducing final error.

• D→K being done in parallel, but fits not analyzed yet...



Some projects I didn’t talk about:

✦ B → D* l ν  [arXiv:0808.2519, arXiv:1011.2166] (J. Laiho)

✦ B → D l ν  [arXiv:1111.0677] (S. Qiu)

✦ B → K l l ;  B → K* γ  [arXiv:1111.0677] [R. Zhou; see his talk]

✦ B → π l ν  [arXiv:0811.3640] (R. Van de Water)

✦ Bs → μ+ μ-  [using f  for (Bs →Ds)/(B→D); arXiv:1202.6346] 
(D. Du)

✦ D → π  l ν, D → K l ν  [arXiv:0811.3640] (J. Bailey)
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Heavy-Quark Semileptonic Decays  [Fermilab/MILC] 

Quarkonia [Fermilab/MILC] 
✦ [arXiv, 0912.2701, arXiv:1012.1837]  (L. Levkova, C. DeTar, 

A. El-Khadra, E. Freeland,S. Gottlieb, A. Kronfeld,...)



Some projects I didn’t talk about:

✦ Pseudoscalar mesons [arXiv:0812.4486, arXiv: 1011.3994, 
PoS(Lat10) 127] (S. Basak, A. Torok, S. Gottlieb, L. Levkova, E. 
Freeland, CB)

✦ Baryons  (S. Gottlieb & students)

47

Electromagnetic Effects [MILC]

Strangeness content of the nucleon, etc. [MILC]
✦ Nucleon strangeness [arXiv:0905.2432, arXiv:1011.5271] 

(D. Toussaint, W. Freeman)

✦ Nucleon charm [arXiv:1204.3866] (D. Toussaint, W. Freeman)

✦ σπN  (D. Toussaint, W. Freeman)



Fermilab Lattice/MILC Collaboration
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